LAPLACE
TRANSFORMATIONS

® Developed mathematics in astronomy,
physics, and statistics

® Began work in calculus which led to the
Laplace Transform

® Focused later on celestial mechanics

® [ne of the first scientists to suggest the
existence of black holes
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Laplace Transforms

Laplace transforms are invaluable for any engineer’s mathematical toolbox as
they make solving linear ODEs and related initial value problems, as well as
systems of linear ODESs, much easier. Applications abound: electrical networks,
springs, mixing problems, signal processing, and other areas of engineering and
physics.

https://www.intmath.com/laplace-transformation/intro.php

1- Laplace Transform, Linearity, Shifting Theorem (s-Shifting)

Laplace Transform

If £(t) is a function defined for all t > 0, its Laplace transform is the integral
of f(t) times e ™St from t = 0 to oo. It is a function of s, say F(s), and is denoted
by L{f (£)}, thus

LF©) = j F(O) et dt = F(s) Q)

Here we must assume that the integral exists.

The inverse transform

f(©) = L7HF (s)}

oo

LHF()} = f F(s) et ds = £(¢) @

0

1)


https://www.intmath.com/laplace-transformation/intro.php

Example 1: Show that

Solution:

1
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L{1} = f le st dt
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Example 2:
Find Laplace transform of f(t) = e%, i.e., L{e%}

Solution:
Again by Eq. (1)

LF ) = fo F(O etde=F(s), let f(t) = e
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L{e"} = f e e~St dt
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Theorem 1: Linearity of the Laplace Transform

Theorem: Laplace transform is a linear operation

L{af®)+bg®)}=aL{f()} £ b L{g(t)} = aF(s) + bG(s), (6)
Proof

Llaf@©) + b g(©)} = jo {@f(®) +bg®}e dt

(00]

= ajo f(t) e Stdt + bj; g(t) e st dt

=a L{f(6)} £ b L{g(t)}
=aF(s)xbG(s)

Example 4 Using the linearity property, derive the formulas

S
L{coshat} = R (7
_ a
L{sinhat} = R (8)
Solution
eat + e—at
L{coshat} =L {T}

1
= 5 [£(e®) + Lo~
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et
2Ils—a s+a

1[(s+a)+(s—a)
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11 2s
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52 _ g2
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Example 5 Derive the following formulas

S

L t}=———, 9
{cos at} 712 9

Y p— 10
sina =T raZ (10)

Solution

Assuming L. = L{cosat} = fooo cosat e St dt

and Ls = L{sinat} = fooo sinat e~St dt
Therefore
oo Integrating by part by assuming
L. = L{cosat} = j cosat e St dt u=cosat and dv=eStdt
—st
0 ~du = —asinat dt and v = e_s
e~St @ o o—st
= [cos at ] — j (—asinat dt)
—S 0o —S
0
-1 a:(* _
= —/|cosate S|y — — f e St sinat dt
S s :J,
— a
=—|[0— 0e’]l—-—1
. [0 —cos0 e”] 5 Ls
1
LC == E - ; LS (51)
Similarly
a
Ly=—1L,

(5.2)

This is two linear equations, can be solved simultaneously:

2
FromEq. (5.1) == L. = %—%% L, =%—Z—2LC
a? 1
Lc S_ZLC =§

+
a’ 1
Lc 1+S_2 =;

()



. s?+a%\ 1
‘\ sz ) s
s?+a?
c S =1
S
wLe= T (5.3)
Substituting Eq. (5.3) into Eq. (5.2)
I a s a
S ss2+a? s?+a?
Table 6.1 Some Functions f(t) and Their Laplace Transforms £(f)
f(@) £L(f) 0 Z£(f)
§
1 1 1/s 7 cos wf
52 + o?
2 t 1/s2 8 sin w! °
52 + o?
3 2 2!/5° 9 cosh at s
5% - a?
t" n! . a
4 =011 s 10 sinh at ER
Fa+1) -
5 r 11 e cos wt e
(a positive) §a+1 s -a)?+ o?
6 e™ _1 12 e™ sin wt — v
s—a (s — a)2 + o

(6)




Example 6: Show that

ey = | (11)

0
L{t_l/z} = f t_l/z e‘St dt Let st=x =—> dt = %
0

Solution:

_ e~X
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1 1/2 dx
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j (x s1/2
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Example 7: Show that

'n+1)

( Sn+1 , n>-1
L{t"} = {
n!
s n=20,1,2..
Solution:
L{t"} = f t" e St dt
0

Sn+1

1 o0
= J x"e ™™ dx
0

B 'n+1)

Sn+1 ’

For integer values of n, i.e.,n=0, 1,2, ... —

s LY =
eg, if n=0, L1} ==
if n=1, L{t} = lz

(8)

(11)

Let st = x dt ==

e *dx=T(n+1), n+1>0,
orn>—1

oo
0

'n+1) =n!

n=20,1,2,..



Shifting Theorem (s-Shifting)

It L{f (O} =F(s),
therefore  L{e% f(t)} = F(s — a),

where a iIs constant

Proof:

© F(s) = LUF(D) = j () et dt
0
w F(s—a)= Joof(t) e~ (=Dt gt
0
_ f TlFO et et dr | Let f(£)e% = g(t)
0

= j g(t) e st dt
0

= L{g(t)}
= L{f (t) e}

Example 8: Find Laplace transform of et t | i.e., find L{e?* t}

Solution: v L{t} = siz = F(s)
o L{e?t t} =F(s —2)
_ 1
(s —2)?
Example 8:
Find L{e 3¢ cos bt}
Solution:
v L{cos bt} = szj-—bz = F(s)
o L{e 3t cosbt} = F(s + 3)
_ s+3
(s +3)% + b?

(9)



2- Unit step Function

The Unit step function is also called Heaviside function which defined as follows:

Y 1 I
0, t<O
u(t) = 0-5
1, t>0 . |
1 —0 o 0.5 1 B
shifting the unit step function is:
0, t—a<o0 4
u(t—a) =1 1 S
1, t—a>0 :
0, t<a :
= ; 3
ll ) t>a 0 a >t
Example 8:
Show that
e—as
L{u(t —a)} = - s>0
Solution:

(0]

v L{u(t—a)} = f u(t —a) e Stdt

0

a (o]
= f u(t—a) e stdt + j u(t—a)estdt
0 a

_ ja(O) et dt + foo(1) et dt

=j e St dt
a

1
— e—st 0o
— [e™]
1 1 —sT —sa . .
- lim e™" —e ] 1% term is equal to zero if s > 0
1 e—as
[ 0 — e—Sa —_
— I J=—



Application of the Unit step function

f(t)=exp(-t"2)
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The rectangular pulses can be generated by summing Unit step functions

Example 9: Generate a rectangular pulse f(t) of amplitude A and period a
starting from t=0.
Solution:  f(t) = Afu(t) —u(t — a)]

Example 10: Find Laplace transform for a rectangular pulse

f(©) = Alu(t) — u(t — a)]

Solution:
L{F ()} = L{A[u() —u(t — a)]}
= A L{[u(®) —u(t - a)]}
= A[L{u(®)} — L{u(t — a)}]

1 e—as
-]
S S

(12)




If £(8) = Afu(®) — u(t - )] = L{FO)} =4[} -]

S

Examplell: Find L.T. for the pulse indicated in the figure using the formula

—as

e
L{u(t—a)} = .

fit)

2k £ mll

Solution:

f(t) can be expressed by using the Unit step function:

f@t) =2klu(t—1) —u(t —2)] — k[u(t —2) —u(t — 3)] + ku(t — 3)
=k[2u(t —1) — 2u(t — 2) —u(t — 2) + u(t — 3) + u(t — 3)]
= k[2u(t — 1) — 3u(t — 2) + 2u(t — 3)]

L{f ()} = L{k[2u(t — 1) — 3u(t — 2) + 2u(t — 3)]}
=k L{2u(t — 1) — 3u(t — 2) + 2u(t — 3)}
=k [2L{u(t — 1)} — 3L{u(t — 2)} + 2L{u(t — 3)}]

2e7S 3e7?% 2e73s




3- Theorem: Lplace transform of the derivative
If £(t) and it’s derivative f'(t) are continuous for att t > 0, hence, L{f(t)} and
L{f'(t)} are exist.

LIF(0)} = s LIF ()} - f(0) (12)

Proof:

o Integrating by part by assuming
L{f ()} = j ffeStdt: u=est and dv=/f'(t)dt
0 sdu=—seStdt and v = f(t)

— [f(D) et — j () (=s et dt)
0

= [0 — f(0)] +sj f(t) estdt
0

=—f(0) +s L{f (D)}

=s L{f(t)} — f(0)

Example 12: Show that

L ()} = s LIF (O} — s £(0) — f'(0) (13)
Provided that f, f, f'' are continuous for t > 0 and their L.T. are exist.

Solution:
From Eq. (12)
LI ()} = s LIF (D)} — £(0)
= LT O)) = s LI ()} - £(0)
= s[s L{f(©)} - f(0)] - £(0)
= s? L{f ()} —s f£(0) — f'(0)

Similarly, one can show that

(14)



LFO )} = s> LIF ()} = s* f(0) = s fP(0) — FP)(0) (14)
Generally,

L{f®®} = s"LF©)} - sPTHF(0) = sPFD0) = s (0) — - = fPTD(0) | (15)

Example 13: Find L.T for : f(t) = tcosat : for f(0) =0
Solution:
f(t) =tcosat
f'(t) = cosat — atsinat ~f1(0)=1
f"(t) = —asinat — asinat — a*t cosat = —2asinat — a®t cos at
=—2asinat — a? f(t)
Using Eq. (13)
L{f"(0)} = s* LIF(O)} — s £(0) = £7(0)
L{—2asinat —a® f(t)} =s?> L{f ()} —sx0—1
—2a L{sinat} —a® L{f ()} = s> L{f ()} — 1
—2a L{sinat} + 1 = s? L{f ()} + a® L{f (1)}

—2a|5=| +1 = [s? + &?] L{F ()
B 5223; = [s% + a?] L{f (D)}

sz:i;az = [s% + a?] L{f (1)}

S s+ a?] (1))

s%2—a?
(52+a2)2 = 'E{f(t)}
s? —a?

~ L{tcosat} = m

(15)



4- Theorem: Differentiation of laplace’s transform
If f(t) satisfies the condition of the existence theorem and its L{f (t)} = F(s),

hence,
dF(s)
L{ef(O} = —— (16)
Proof:
TF) = L) = | f©) e de
0
. jo TF@) et de = fo F@) (et e
= [ trwetar Lett £(8) = g ()
0
= —ng(t)e‘“ dt
0
= —L{g(®)} = —L{t f(©)}
Therefore, one can conclude that
LI f(O)} = (—1)’1% n=0,1,2,.. (17)

(16)



Example 14:

let g(t) =tsint.

Find L{g(t)} and L{g' ()}
Solution:

Let f(t) = sint

v L{f(t)} = L{sint} = F(s) =

s2+1
Using Eq. (16)
dF
Lig®)} = Lit f(O)} = L{tsint} = — dS)
_d 1
T ds [52 +1
B 0-2s 2s
T (s2+1)2 (s2+1)2
2
~ L{g(t)} = L{tsint} = ﬁ

Using Eq. (12)

L{g'(®)} = s L{g(O)} — g(0)
2s
=S m -
252
GERE

0

2S

~ Ho O} =Gz

(17)



5- Inverse Laplace Transform

If L{f ()} = F(s)
Therefore L H{F(s)} = f(t)

LD} =
f(®) F(s)

T LTYF(s)} T

E.g.,
If L{e®)} = —

Therefore L£71 {ﬁ} = %

Shifting property of the inverse L. T

 L{e® f(£)} = F(s — a)
Therefore,

“LHF(s—a)}=e* f()
where F(s) = L{f(t))}

(18)



6- Ordinary differential equation

There are many methods concern with solving linear ordinary differential
equations (ODE) with initial conditions. These problems are called initial value
problem (IVVP). Laplace transform method is one of the most popular methods
which characterized by its simplicity. It uses the initial conditions implicitly in the

solution steps.

The general form of linear second order ODE is

ey L, ® = O
@ e at <Y ) =f®,

where a, b and ¢ are constants.

The ODE can be transformed into algebraic equation by using Laplace transform

L{y(®)} =Y(s),
where the solution of the ODE, y(t), can be found by applying the inverse LT,

i.e.,
L7HY ()} = (D)
Example 15:
Solve the following IVP
d’y dy
— 222 2 =2 —4t
qrz S T2y =2eT,
for the following initial values:
y(0) =0
y'(0)=1
Solution:

Taking L.T for the ODE vyields
L{y"} = 3L{y'}+ 2 L{y} = 2 L{e™*}
Let L{y(©)} =Y (s)
From Eq. (12) — L{y'(t)} = s Y(s) —y(0)
+ =sY(s)
(19)



From Eq. (13) = L{y" (t)} = s*Y(s) — s y(0) — y'(0)
=s2Y(s)—1

Substituting L{y'(t)} and L{y"' (t)} into the ODE

1
[SZY(S) — 1] — 3[5 Y(S)] + 2 Y(S) =2 |:S+—4]

1
Y 2_3 21=1 2[—
(s)[s s+ 2] + p——

Y(s)[s? —3s+2] =S_:jr_—4+2
Y(s) = : s+6
(52 =3s+2)(s+4)
2 Y(s) = SHO (15.1)

(s—1D(s—2)(s+4)

Using partial fractions, in order to apply the linearity property of Laplace’s
operator:
s+6 A B C
G-DG-2)s+4) s—1 s—2Vs5+4

s+6=AG—-2)(s+4)+B(s—1)(s+4)+C(s—1)(s—2)
s+6=A4(s*+25s—8)+B(s*+3s—4)+C(s?—35s+2)
s+6=5*(A4+B+C)+s(2A+3B—-3C)+ (-84 —4B + 2C)

W S?(A+B+C)+s(RA+3B—-3C—-1)+(-84—4B+2C—-6)=0

Equating the coefficients of s2 to zero A+B+C=0 eeeeen(1)
Equating the coefficients of s to zero 2A+3B—-3C—-1=0 ........(2)
Equating the coefficients of s° to zero —8A—-4B+2C—-6=0........ 3)

This is a system of three linear equations, can be solved simultaneously to find
the coefficients A, B, and C.



Another method for calculating the coefficients

s+6 A B C  A-2)s+4D+Bs—D(+4)+C(—1D(s—2)
(s—l)(s—Z)(s+4)_s—1+s—2+s+4_ (s—D(—-2)(+4)

vs+6=A4A(-2)(s+4)+B(s—1)(s+4)+C(s—1)(s—2)

Lettings = 1gives == 7=A(-1)(5)=-54 =» A= _g

Lettings = 2 gives =+ 8 =B (1)(6) = 6B —> B = g
Letting s = —4 gives ==+ 2 =C (=5)(=6) = 15C ==+ C =§
Substituting these coefficients into Eq. (15.1)
-7 4 1
5 3 15
Y(s) =
() s—1+s—2+s+4
Taking the inverse Laplace transform L71{Y (s)} = y(t)
-7 4 1
-1 — -1 T -1 § -1 1_5
T O A e N R Py S hyrw

(t) = 7L‘1{ 1 }+4L‘1{ 1 }+ 1 L‘l{ 1 }
YW= 755 5-1J73 s—2J 15 S+4

Using Eqg. (4) L{e} = ﬁ
-1( 1) _ _at
L) =
A table of Laplace transforms is useful which can be found online here.
Therefore, the solution of the IVP is:
1

7 4
£) = — L pt 4 p2t 4 —_ o4t
y(t) 5e +3e +1Se

(21)


http://www.sosmath.com/diffeq/laplace/table/table.html

Example 16:
Solve the following IVP
y'®)+y =2y =4,
with the following initial values:
y(0) =2
y'(0) =1
Solution:
We begin by applying the Laplace transform to both sides. By linearity of the
Laplace transform, we have
L"} + L{y'} — 2L{y} = L{4}.
Therefore,

4
(s’L{y} —2s = 1) + (sL{y} — 2) — 2L{y} = 3

Next, combine like terms to get

4
(52+s—2)[,{y}=§+2$+3

25> 4+3s+ 4
. .

(s—D(s+2)L{y} =
Notice that the coefficient in front of £{y} is the characteristic equation of the
differential equation. This is not a coincidence. Putting under a common
denominator, dividing and factoring we get

252 +3s+4
(s—1(s+ 2)'

To find y(t), we need to take the Inverse Laplace Transform of the right-hand

L{y} = S

side. Unfortunately, finding a function y such that the right-hand side is the
Laplace transform of y is not an easy task. The technique that just about always
works is partial fractions. We write

2s*+3s+4 A B C

s(s—=1)(s+2) :;+S—1+S+2

(22)


https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Integral_Calculus/2%3A_Techniques_of_Integration/2.5%3A_Partial_Fractions

2s°+3s+4  A(s—1D(s+2)+Bs(s+2)+Cs(s—1)
s(s—1D(s+2) s(s=1)(s+2)

which gives
A(s—1)(s+2)+Bs(s+2)+Cs(s—1)=2s%+3s + 4.

Lettings = 0 gives —2A=4 and A=-2

Lettings =1 gives 3B=9 and B=3

Lettings = -2 gives 6C=6 and C=1

Now we solve

3+1
s—1 s+2

2
Lyt=—<+

or

y()=-2L7" {%} +3L71 {S_%} + L1 {

Now we can use the table to get

S+2}'

y(t) = —-2+3et +e7 %,

(23)



Example 17: Discharging the capacitor
Find the voltage v(t) across the capacitor as a function of time.

V. Ci) C=

10. Applications of Laplace (intmath.com)

Solution:
VR +v= ]/S
If V. = 0 (when the source is removed and the circuit is closed)
IR+v =0
I(t)R+v(t) =0
C dvR +v(t) =0
dv N 1 0
dt " RC'
dv(t) 1 ©® 171
dt  RC' 17.1)
dv(t)  dt
v  RC
Integrate both sides — In(v) =-— % + const.

Initial condition:att =0 =——> v(0) =V, == [n(V,) = const.

- In(w) = — % + In(V)

In(v) = In (V) = ==


https://www.intmath.com/laplace-transformation/10-applications.php

Solving Eq. (17.1) using Laplace transformation assuming that L{v(t)} = V(s)
and L7V (s)} = v(¢t)

v'(t) +— v(t) = 0

RCV'(t)+v(t) =0

RC L' ()} + L{v(t)} =0

RC[sV(s)—v(0)]+V(s)=0

RC[sV(s)—V,]+V(s)=0

V(s)[RCs+1]—RCV, =0

V(s)[RCs+ 1] =RCV,

Taking the I.L. T

L7V} =v(@®) =T, L‘l{ - T }
S+ 57

Where we use Eq. (5)  L{e™%} = —

s+a

(25)



